OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 44 trang 113 SBT Toán 11 Tập 1 Cánh diều - CD

Bài tập 44 trang 113 SBT Toán 11 Tập 1 Cánh diều

Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh?

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài tập 44

Trước hết, ta sẽ chứng minh kết quả phụ: Trong một hình bình hành, tổng bình phương của hai đường chéo bằng tổng bình phương tất cả các cạnh của hình bình hành.

Xét hình bình hành \(MNPQ\) như hình dưới đây.

Ta cần chứng minh rằng \(M{P^2} + N{Q^2} = M{N^2} + N{P^2} + P{Q^2} + Q{M^2}\)

Áp dụng định lí cosin trong tam giác \(MPQ\) và \(NPQ\), ta có:

\(M{P^2} = Q{M^2} + Q{P^2} - 2QM.QP.\cos MQP\)

\(Q{N^2} = P{Q^2} + P{N^2} - 2PN.PQ.\cos QPN\).

Do \(QM = PN\) và \(\cos MQP = - \cos QPN\) (do \(\widehat {MQP}\) và \(\widehat {QPN}\) bù nhau), nên ta có

\(M{P^2} + N{Q^2} = M{Q^2} + 2P{Q^2} + P{N^2} - 2QM.QP\cos MQP + 2QM.QP\cos MQP\)

\( \Rightarrow M{P^2} + N{Q^2} = 2\left( {M{N^2} + N{P^2}} \right)\).

Ta có điều phải chứng minh.

Quay trở lại bài toán, ta xét hình hộp \(ABCD.A'B'C'D'\).

Áp dụng kết quả vừa chứng minh được ở trên với hai hình bình hành \(ACC'A'\), \(DBB'D'\) và \(A'B'C'D'\) ta có:

\(AC{'^2} + A'{C^2} = 2\left( {AA{'^2} + A'C{'^2}} \right)\) ; \(B'{D^2} + BD{'^2} = 2\left( {BB{'^2} + B'D{'^2}} \right)\);

\(A'C{'^2} + B'D{'^2} = 2\left( {A'B{'^2} + A'D{'^2}} \right)\).

Như vậy:

\(AC{'^2} + A'{C^2} + BD{'^2} + B'{D^2} \\= 2\left( {AA{'^2} + A'C{'^2} + BB{'^2} + B'D{'^2}} \right)\)

\( = 4AA{'^2} + 2\left( {A'C{'^2} + B'D{'^2}} \right) \\= 4AA{'^2} + 4A'B{'^2} + 4A'D{'^2}\).

Do \(4AA{'^2} = AA{'^2} + BB{'^2} + CC{'^2} + DD{'^2}\), \(4A'B{'^2} = A'B{'^2} + A{B^2} + C'D{'^2} + C{D^2}\), \(4A'D{'^2} = A'D{'^2} + A{D^2} + B'C{'^2} + B{C^2}\).

Ta kết luận rằng trong một hình hộp, tổng bình phương tất cả các đường chéo bằng tổng tất cả các cạnh của hình hộp đó.

Bài toán được chứng minh.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 44 trang 113 SBT Toán 11 Tập 1 Cánh diều - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF