OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Giải Bài 5 trang 102 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST

Giải Bài 5 trang 102 SBT Toán 10 Chân trời sáng tạo tập 2

Gieo một con xúc xắc bốn mặt cân đối và đồng chất ba lần. Xác suất xảy ra biến cố “Có ít nhất 1 lần xuất hiện đỉnh ghi số 4” là:

A. \(\frac{1}{4}\)       

B. \(\frac{{27}}{{64}}\)

C. \(\frac{{37}}{{64}}\)

D. \(\frac{3}{4}\)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết bài 5

Phương pháp giải

Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega  \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)

Biến cố đối của biến cố A là biến cố không xảy ra A, kí hiệu là \(\overline A \) và \(P\left( {\overline A } \right) + P\left( A \right) = 1\)

Lời giải chi tiết

Gọi A là biến cố “Có ít nhất 1 lần xuất hiện đỉnh ghi số 4”

\( \Rightarrow \overline A \): “không lần nào xuất hiện đỉnh ghi số 4”

+ Tính xác suất để không lần nào xuất hiện đỉnh ghi số 4 

\( \Rightarrow \)\(P\left( {\overline A } \right) = \frac{{n\left( {\overline A } \right)}}{{n\left( \Omega  \right)}} = \frac{{3.3.3}}{{4.4.4}} = \frac{{37}}{{64}}\)

\( \Rightarrow \) \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - \frac{{37}}{{64}} = \frac{{27}}{{64}}\)

Chọn C.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 5 trang 102 SBT Toán 10 Chân trời sáng tạo tập 2 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF