OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 5 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1

Cho hai vectơ có độ dài lần lượt là 6 và 8 và có tích vô hướng là 24. Tính góc giữa hai vectơ đó.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 5

Phương pháp giải

Chọn điểm A bất kì, vẽ \(\overrightarrow {AB}  = \overrightarrow u \) và \(\overrightarrow {AC}  = \overrightarrow v \). Khi đó \(\left( {\;\overrightarrow u ,\overrightarrow v } \right) = \widehat {BAC}\).

Lời giải chi tiết

Ta có \(\overrightarrow {{a_1}} .\overrightarrow {{a_2}}  = \left| {\overrightarrow {{a_1}} } \right|.\left| {\overrightarrow {{a_2}} } \right|.\cos \left( {\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} } \right)\\ \Rightarrow 24 = 6.8.\cos \left( {\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} } \right)\)

\( \Rightarrow \cos \left( {\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} } \right) = \frac{1}{2} \\ \Rightarrow \left( {\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} } \right) = 60^\circ \)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 5 trang 101 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF