Giải bài 17 trang 10 SBT Toán 10 Cánh diều tập 1
Cho phương trình \(a{x^2} + bx + c = 0\).
a) Xét mệnh đề “Nếu \(a + b + c = 0\) thì phương trình \(a{x^2} + bx + c = 0\) có một nghiệm bằng 1”. Mệnh đề này đúng hay sai?
b) Phát biểu mệnh đề đảo của mệnh đề trên. Mệnh đề đảo đúng hay sai?
c) Nêu điều kiện cần vào đủ để phương trình \(a{x^2} + bx + c = 0\) có một nghiệm bằng 1.
Hướng dẫn giải chi tiết Bài 17
Phương pháp giải
Mệnh đề đảo của \(P \Rightarrow Q\) là \(Q \Rightarrow P\).
Nếu \(P \Rightarrow Q\) và \(Q \Rightarrow P\) đều đúng thì ta có mệnh đề tương đương \(P \Leftrightarrow Q\), có thể phát biểu dạng: “Điều kiện cần vào đủ để có P là Q”
Lời giải chi tiết
a) Mệnh đề này đúng.
\(a + b + c = 0\) hay \(a{.1^2} + b.1 + c = 0\), do đó \(x = 1\) là nghiệm của phương trình \(a{x^2} + bx + c = 0\).
b) Mệnh đề đảo: “Nếu phương trình \(a{x^2} + bx + c = 0\) có một nghiệm bằng 1 thì \(a + b + c = 0\)”.
Mệnh đề đảo này đúng.
c) Điều kiện cần vào đủ để phương trình \(a{x^2} + bx + c = 0\) có một nghiệm bằng 1 là \(a + b + c = 0\).
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.