OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hai giá trị của \(x,y\) thỏa mãn \(2{x^2} + {y^2} + 9 = 6x + 2xy\). Tính giá trị của biểu thức \(A = {x^{2017}}{y^{2018}} - {x^{2018}}{y^{2017}} + \dfrac{1}{9}xy\).

Cho hai giá trị của \(x,y\) thỏa mãn \(2{x^2} + {y^2} + 9 = 6x + 2xy\). Tính giá trị của biểu thức \(A = {x^{2017}}{y^{2018}} - {x^{2018}}{y^{2017}} + \dfrac{1}{9}xy\). 

  bởi Sam sung 13/07/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có:

    \(\begin{array}{l}\;\;\;\;\;2{x^2} + {y^2} + 9 = 6x + 2xy\\ \Leftrightarrow 2{x^2} + {y^2} + 9 - 6x - 2xy = 0\\ \Leftrightarrow \left( {{x^2} - 2xy + {y^2}} \right) + \left( {{x^2} - 6x + 9} \right) = 0\\ \Leftrightarrow {(x - y)^2} + {(x - 3)^2} = 0\end{array}\)

    Vì \({(x - y)^2} \ge 0\,,\,\,{(x - 3)^2} \ge 0\,\,(\forall x,y)\) nên suy ra \({(x - y)^2} + {(x - 3)^2} \ge 0\).

    Dấu \( = \) xảy ra khi \( \Leftrightarrow \left\{ \begin{array}{l}x - y = 0\\x - 3 = 0\end{array} \right. \Leftrightarrow x = y = 3\).

    \(\begin{array}{l}A = {x^{2017}}{y^{2018}} - {x^{2018}}{y^{2017}} + \dfrac{1}{9}xy = {(xy)^{2017}}(y - x) + \dfrac{1}{9}xy\\ \Rightarrow A = {(3.3)^{2017}}(3 - 3) + \dfrac{1}{9}.3.3\\ \Rightarrow A = 1\end{array}\)

    Vậy giá trị của biểu thức là \(A = {x^{2017}}{y^{2018}} - {x^{2018}}{y^{2017}} + \dfrac{1}{9}xy\) là \(1\) .

      bởi thuy tien 14/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF