YOMEDIA
10AMBIENT
Banner-Video
VIDEO

Trong mặt phẳng \(Oxy\) cho đường tròn \(\left( C \right):{x^2} + {y^2} - 6x + 4y - 23 = 0\), tìm phương trình đường tròn \(\left( {C'} \right)\) là ảnh của đường tròn \(\left( C \right)\) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow v = \left( {3;5} \right)\) và phép vị tự \({V_{\left( {O; - \frac{1}{3}} \right)}}.\)

A. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 4.\)

B. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 36.\)

C. \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 6.\)

D. \(\left( {C'} \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} = 2.\)

  bởi Vương Anh Tú 25/02/2021
ADSENSE
QUẢNG CÁO

Câu trả lời (1)

  • Đường tròn (C ) có tâm \(I\left( {3; - 2} \right)\) bán kính \(R = \sqrt {{3^2} + {{\left( { - 2} \right)}^2} - \left( { - 23} \right)}  = 6\).

    Gọi \(I' = {T_{\overrightarrow v }}\left( I \right)\) \( \Rightarrow \left\{ \begin{array}{l}x' = 3 + 3 = 6\\y' =  - 2 + 5 = 3\end{array} \right.\) \( \Rightarrow I'\left( {6;3} \right)\)

     

    \(I'' = {V_{\left( {O; - \frac{1}{3}} \right)}}\left( I \right)\) \( \Rightarrow \left\{ \begin{array}{l}x'' =  - \frac{1}{3}.6 =  - 2\\y'' =  - \frac{1}{3}.3 =  - 1\end{array} \right.\) \( \Rightarrow I''\left( { - 2; - 1} \right)\)

    (C’) có tâm \(I''\left( { - 2; - 1} \right)\) bán kính \(R' = \left| { - \frac{1}{3}} \right|R = \frac{1}{3}.6 = 2\) nên có phương trình:

    \(\left( {C'} \right):{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 4.\)

    Chọn A

      bởi Ngoc Nga 25/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 

 

 
 
MGID

Các câu hỏi mới

YOMEDIA