OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm số hạng chứa x4 trong khai triển nhị thức Niu-tơn của \(\left ( x^2-\frac{2}{x} \right )^n\)

Tìm số hạng chứa x4 trong khai triển nhị thức Niu-tơn của \(\left ( x^2-\frac{2}{x} \right )^n\)với x ≠ 0, biết rằng: \(C_{n}^{1}+C_{n}^{2}=15\) với n là số nguyên dương.

  bởi Tran Chau 07/02/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có \(C_{n}^{1}+C_{n}^{2}=15\Leftrightarrow C_{n+1}^{2}=15\Leftrightarrow \frac{n(n+1)}{2}=15\)
    \(\Leftrightarrow n^2+n-30\Leftrightarrow \bigg \lbrack\begin{matrix} n=5 \ (t/m)\\ n=-6 \ (loai) \end{matrix}\)
    Với n = 5 và \(x\neq 0\) ta có \(\left ( x^2-\frac{2}{x} \right )^5=\sum_{k=0}^{5}C_{5}^{k}(x^2)^k(-\frac{2}{x})^{5-k}=\sum_{k=0}^{5}.C_{5}^{k}.x^{3k-5}.(-2)^{5-k}\)

    Số hạng chứa x4 trong khai triển trên thỏa mãn \(3k-5=4\Leftrightarrow k=3\) suy ra số hạng chứa x4 trong khai triển trên là 40x4.

      bởi thanh hằng 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF