OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Tìm số các số hạng của cấp số nhân \(\left( {{u_n}} \right),\) biết rằng: \(q = 2,{u_n} = 96,{S_n} = 189\)

  bởi Ánh tuyết 17/04/2022
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có: \({u_n} = {u_1}{q^{n - 1}} \Leftrightarrow 96 = {u_1}{.2^{n - 1}}\)

    Lại có: \({S_n} = \dfrac{{{u_1}\left( {{q^n} - 1} \right)}}{{q - 1}}\) \( \Leftrightarrow 189 = \dfrac{{{u_1}\left( {{2^n} - 1} \right)}}{{2 - 1}}\) \( \Leftrightarrow 189 = {u_1}\left( {{2^n} - 1} \right)\)

    \( \Rightarrow \dfrac{{189}}{{96}} = \dfrac{{{2^n} - 1}}{{{2^{n - 1}}}}\) \( \Leftrightarrow {189.2^{n - 1}} = {96.2^{n - 1}}.2 - 96\) \( \Leftrightarrow {3.2^{n - 1}} = 96 \Leftrightarrow {2^{n - 1}} = 32\) \( \Leftrightarrow n - 1 = 5 \Leftrightarrow n = 6\)

    Vậy \(n = 6.\)

      bởi Long lanh 18/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF