OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Tìm giới hạn của dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {{{2^n} - n} \over {{3^n} + 1}}\)

  bởi Mai Linh 01/03/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có: \(\left| {{u_n}} \right| = \left| {{{{2^n} - n} \over {{3^n} + 1}}} \right| < {{{2^n}} \over {{3^n} + 1}}=v_n\)

    \(\lim \dfrac{{{2^n}}}{{{3^n} + 1}} = \lim \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^n}}}{{1 + \dfrac{1}{{{3^n}}}}}\) \( = \dfrac{0}{{1 + 0}} = 0\)

    \( \Rightarrow {v_n} = \dfrac{{{2^n}}}{{{3^n} + 1}}\) nhỏ hơn một số dương bé tùy ý từ một số hạng nào đó trở đi

    \( \Rightarrow \left| {{u_n}} \right| < {v_n}\) cũng nhỏ hơn một số dương bé tuy ý từ một số hạng nào đó trở đi

    \( \Rightarrow \lim {u_n} = 0\) (theo định nghĩa)

      bởi Nguyễn Lê Tín 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF