OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm f^(n) (x) biết f(x)=1/(ax+b)

Cho \(f\left(x\right)=\frac{1}{ax+b}\). Tìm \(f^{\left(n\right)}\left(x\right)\)

  bởi Nguyen Ngoc 24/10/2018
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có : \(f\left(x\right)=\left(ax+b\right)^{-1}\)

               \(f'\left(x\right)=-a\left(ax+b\right)^{-2}\)

               \(f"\left(x\right)=1.2a^2\left(ax+b\right)^{-3}\)

               \(f'''\left(x\right)=-1.2.3a^2\left(ax+b\right)^{-4}\)

    Dự đoán :

                  \(f^{\left(n\right)}\left(x\right)=\left(-1\right)^nn!a^n\left(ax+b\right)^{-\left(n+1\right)}\)  (1)

    (1) được chứng minh bằng phương pháp quy nạp sau :

    - (1) đã đúng với n = 1,2,3

    - Giả sử (1) đã đúng đến n. Ta sẽ chứng minh :

    \(f^{\left(n+1\right)}\left(x\right)=\left(-1\right)^{n+1}\left(n+1\right)!a^{n+1}\left(ax+b\right)^{-\left(n+2\right)}\)   (2)

    Thật vậy,

    \(f^{\left(n+1\right)}\left(x\right)=\left(f^{\left(n\right)}\left(x\right)\right)'=\left[\left(-1\right)n!a^n\left(ax+b\right)^{-\left(n+1\right)}\right]'\)

                    \(=\left(-1\right)^nn!a^n\left[-\left(n+1\right)\right]a\left(ax+b\right)^{-\left(n+2\right)}\)

                   \(=\left(-1\right)^{n+1}\left(n+1\right)!a^{n+1}\left(ax+b\right)^{-\left(n+2\right)}\)

    Vậy (2) đúng, tức (1) đúng

    Tóm lại, ta có \(f^{\left(n\right)}\left(x\right)=\left(-1\right)n!\frac{a^n}{\left(ax+b\right)^{n+1}}\)

     

      bởi Nguyễn Danh Tuấn 24/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF