OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Thực hiện tính số các số hạng của cấp số cộng \(\left( {{a_n}} \right),\) nếu \(\left\{ \begin{array}{l}{a_2} + {a_4} + ... + {a_{2n}} = 126\\{a_2} + {a_{2n}} = 42\end{array} \right.\).

  bởi May May 18/04/2022
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có: \({a_2} + {a_{2n}} = 42\) \( \Leftrightarrow {a_1} + d + {a_1} + \left( {2n - 1} \right)d = 42\) \( \Leftrightarrow {a_1} + nd = 21\)

    Lại có: \({a_2} + {a_4} + ... + {a_{2n}} = 126\) \( \Leftrightarrow {a_1} + d + {a_1} + 3d + ... + {a_1} + \left( {2n - 1} \right)d = 126\) \( \Leftrightarrow n{a_1} + d\left( {1 + 3 + ... + 2n - 1} \right) = 126\)

    Mà \(1;3;..;2n - 1\) là cấp số cộng công sai \(2\) gồm \(n\) số hạng, số hạng đầu bằng \(1\) nên:

    \(1 + 3 + .. + 2n - 1\) \( = \dfrac{{n\left[ {2.1 + \left( {n - 1} \right).2} \right]}}{2} = {n^2}\)

    Do đó \(n{a_1} + d.{n^2} = 126\) \( \Leftrightarrow n\left( {{a_1} + nd} \right) = 126\)

    Thay \({a_1} + nd = 21\) ta được \(21n = 126 \Leftrightarrow n = 6\).

    Vậy \(n = 6.\)

      bởi hoàng duy 18/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF