OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Nghiệm dương nhỏ nhất của phương trình \(\sin x + \sin 2x = \cos x + 2 \cos^2 x\) là:

A. \({\pi  \over 6}\)               

B. \({{2\pi } \over 3}\)

C. \({\pi  \over 4}\)               

D. \({\pi  \over 3}\)

  bởi Bảo Hân 23/02/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có:

    \(sinx + sin2x = cosx + 2cos^2x \)

    \(⇔ sinx + 2sinxcosx = cosx + 2cos^2x\)

    \(⇔ sinx(1 + 2cosx) = cos (1 + 2cosx) \)

    \(⇔ (1 + 2cosx)(sinx – cosx) = 0\) 

    \( \Leftrightarrow \left[ \matrix{
    1 + 2\cos x = 0 \hfill \cr
    \sin x - \cos x = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
    \cos x = - {1 \over 2} \hfill \cr
    \tan x = 1 \hfill \cr} \right. \)

    \(\Leftrightarrow \left[ \matrix{
    x = \pm {{2\pi } \over 3} + k2\pi \hfill \cr
    x = {\pi \over 4} + k\pi \hfill \cr} \right.(k \in \mathbb{Z})\)

    Nghiệm dương nhỏ nhất của họ nghiệm : \(x = {{2\pi } \over 3} + k2\pi  \Rightarrow x = {{2\pi } \over 3}\)

    Nghiệm dương nhỏ nhất của họ nghiệm: \(x =  - {{2\pi } \over 3} + k2\pi  \Rightarrow x =  - {{2\pi } \over 3} + 2\pi  = {{4\pi } \over 3}\)

    Nghiệm dương nhỏ nhất của họ nghiệm: \(x = {\pi  \over 4} + k\pi  \Rightarrow x = {\pi  \over 4}\)

    Suy ra nghiệm dương nhỏ nhất của phương trình đã cho là \(x = {\pi  \over 4}\)

    Chọn đáp án C.

      bởi Trần Bảo Việt 23/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF