OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hãy viết phương trình tiếp tuyến của đồ thị hàm số sau \(y = \dfrac{{{x^2} + 4x + 5}}{{x + 2}}\) tại điểm có hoành độ x = 0

  bởi My Le 29/04/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có: \(y = \dfrac{{{x^2} + 4x + 5}}{{x + 2}}\) \( = \dfrac{{\left( {{x^2} + 4x + 4} \right) + 1}}{{x + 2}}\) \( = \dfrac{{{{\left( {x + 2} \right)}^2} + 1}}{{x + 2}}\) \( = x + 2 + \dfrac{1}{{x + 2}}\)

    \( \Rightarrow y' = 1 - \dfrac{1}{{{{\left( {x + 2} \right)}^2}}}\)

    Tại \(x = 0\) thì \(y'\left( 0 \right) = 1 - \dfrac{1}{{{{\left( {0 + 2} \right)}^2}}} = \dfrac{3}{4}\) và \(y\left( 0 \right) = 0 + 2 + \dfrac{1}{{0 + 2}} = \dfrac{5}{2}\)

    Phương trình tiếp tuyến: \(y = \dfrac{3}{4}\left( {x - 0} \right) + \dfrac{5}{2}\) hay \(y = \dfrac{3}{4}x + \dfrac{5}{2}\).

      bởi Hoai Hoai 29/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF