OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau: \(y = {\cos ^2}x + 2\cos 2x\)

  bởi ngọc trang 07/09/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có:

    \({\cos ^2}x + 2\cos 2x\)

    \(\begin{array}{l} = \dfrac{{1 + \cos 2x}}{2} + 2\cos 2x\\ = \dfrac{{1 + 5\cos 2x}}{2}\end{array}\)

    Do \( - 1 \le \cos 2x \le 1\)

    \(\begin{array}{l} \Leftrightarrow  - 5 \le 5\cos 2x \le 5\\ \Leftrightarrow 1 - 5 \le 1 + 5\cos 2x \le 1 + 5\\ \Leftrightarrow \dfrac{{1 - 5}}{2} \le \dfrac{{1 + 5\cos 2x}}{2} \le \dfrac{{1 + 5}}{2}\\ \Leftrightarrow  - 2 \le \dfrac{{1 + 5\cos 2x}}{2} \le 3\end{array}\)

    Vậy hàm số  \(y = {\cos ^2}x + 2\cos 2x\) có GTLN là \(3\)

    đạt được khi \(\cos 2x = 1 \Leftrightarrow 2x = k2\pi \)

    \( \Leftrightarrow x = k\pi ,k \in \mathbb{Z}\)

    GTNN là \( - 2\)  đạt được khi \(\cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi \)

    \( \Leftrightarrow x = \dfrac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

      bởi Nguyễn Hạ Lan 07/09/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF