OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Hãy chứng minh rằng phương trình: \({x^5} - 5x - 1 = 0\) có ít nhất ba nghiệm

  bởi thanh hằng 25/04/2022
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Xét hàm số \(f\left( x \right) = {x^5} - 5x - 1\) trên các đoạn \(\left[ { - 2; - 1} \right],\left[ { - 1;0} \right],\left[ {0;3} \right]\)

    Hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) nên liên tục trên các khoảng \(\left( { - 2; - 1} \right),\left( { - 1;0} \right),\left( {0;3} \right)\)

    Ta có:

    \(\begin{array}{l}f\left( { - 2} \right) =  - 23\\f\left( { - 1} \right) = 3\\f\left( 0 \right) =  - 1\\f\left( 3 \right) = 227\end{array}\)

    Vì \(f\left( { - 2} \right).f\left( { - 1} \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( { - 2; - 1} \right)\)

    \(f\left( { - 1} \right).f\left( 0 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( { - 1;0} \right)\)

    \(f\left( 0 \right).f\left( 3 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) có ít nhất một nghiệm thuộc \(\left( {0;3} \right)\)

    Vậy phương trình \(f\left( x \right) = 0\) có ít nhất 3 nghiệm.

      bởi Song Thu 26/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF