OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Gieo một con súc sắc cân đối và đồng chất. Giả sử con súc sắc xuất hiện mặt \(b\) chấm. Xét phương trình \(x^2 + bx + 2 = 0\). Tính xác suất sao cho phương trình có nghiệm nguyên.

  bởi Huong Hoa Hồng 23/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • \(C\) là biến cố: "Xuất hiện mặt \(b\) chấm sao cho phương trình \(x^2 + bx + 2 = 0\) có nghiệm nguyên" 

    Phương trình (1) có nghiệm

    ⇔ b ∈ {3; 4; 5; 6}.

    Thử các giá trị của b ta thấy:

    Khi \(b=3\) thì phương trình trở thành \({x^2} + 3x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 2\end{array} \right.\,\,\left( {tm} \right)\)

    Do đó \(C = \left\{{3}\right\} \Rightarrow n\left( C \right) = 1\).

    Vậy \(P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega  \right)}} = \frac{1}{6}.\)

      bởi Huong Duong 23/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF