OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh phương trình: \({x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n} = 0\) luôn có nghiệm với n là số tự nhiên lẻ.

  bởi Khanh Đơn 28/02/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Hàm số \(f\left( x \right) = {x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n}\) xác định trên R

    - Ta có

    \(\eqalign{
    & \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \left( {{x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n}} \right) \cr 
    & {\rm{ = }}\mathop {\lim }\limits_{x \to + \infty } {x^n}\left( {1 + {{{a_1}} \over x} + {{{a_2}} \over {{x^2}}} + ... + {{{a_{n - 1}}} \over {{x^{n - 1}}}} + {{{a_n}} \over {{x^n}}}} \right) = + \infty \cr} \)

    Vì \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  + \infty \) nên với dãy số \(\left( {{x_n}} \right)\) bất kì mà \({x_n} \to  + \infty \) ta luôn có \(\lim f\left( {{x_n}} \right) =  + \infty \)

    Do đó, \(f\left( {{x_n}} \right)\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

    Nếu số dương này là 1 thì \(f\left( {{x_n}} \right) > 1\) kể từ một số hạng nào đó trở đi.

    Nói cách khác, luôn tồn tại số a sao cho \(f\left( a \right) > 1\)        (1)

    \(\eqalign{
    & \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {{x^n} + {a_1}{x^{n - 1}} + {a_2}{x^{n - 2}} + ... + {a_{n - 1}}x + {a_n}} \right) \cr 
    & {\rm{ = }}\mathop {\lim }\limits_{x \to - \infty } {x^n}\left( {1 + {{{a_1}} \over x} + {{{a_2}} \over {{x^2}}} + ... + {{{a_{n - 1}}} \over {{x^{n - 1}}}} + {{{a_n}} \over {{x^n}}}} \right) = - \infty \cr} \) (do n lẻ).

    Vì \(\mathop {\lim }\limits_{x \to  - \infty } f\left( x \right) =  - \infty\) nên với dãy số \(\left( {{x_n}} \right)\) bất kì mà \({x_n} \to  - \infty \) ta luôn có \(\lim f\left( {{x_n}} \right) =  - \infty \) hay \(\lim \left[ { - f\left( {{x_n}} \right)} \right] =  + \infty \)

    Do đó, \( - f\left( {{x_n}} \right)\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

    Nếu số dương này là 1 thì \( - f\left( {{x_n}} \right) > 1\) kể từ số hạng nào đó trở đi. Nói cách khác, luôn tồn tại b sao cho \( - f\left( b \right) > 1\) hay \(f\left( b \right) <  - 1\)               (2)

    - Từ (1) và (2) suy ra \(f\left( a \right)f\left( b \right) < 0\)

    Mặt khác, \(f\left( x \right)\) hàm đa thức liên tục trên R nên liên tục trên [a; b]

    Do đó, phương trình \(f\left( x \right) = 0\) luôn có nghiệm.

      bởi Nguyễn Hiền 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF