OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho hàm số sau \(y = f\left( x \right)\) xác định trên khoảng (a; b) chứa điểm \(x_0\). Chứng minh rằng nếu \(\mathop {\lim }\limits_{x \to {x_0}} {{f\left( x \right) - f\left( {{x_0}} \right)} \over {x - {x_0}}} = L\) thì hàm số \(f\left( x \right)\) liên tục tại điểm \(x_0\).

  bởi Bao Nhi 25/04/2022
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Đặt \(g\left( x \right) = {{f\left( x \right) - f\left( {{x_0}} \right)} \over {x - {x_0}}} - L\)

    Suy ra \(g\left( x \right)\) xác định trên \(\left( {a{\rm{ }};{\rm{ }}b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = 0\)

    Mặt khác, \(f\left( x \right) = f\left( {{x_0}} \right) + L\left( {x - {x_0}} \right) + \left( {x - {x_0}} \right)g\left( x \right)\) nên

    \(\eqalign{
    & \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( {{x_0}} \right) + L\left( {x - {x_0}} \right) + \left( {x - {x_0}} \right)g\left( x \right)} \right] \cr 
    & = \mathop {\lim }\limits_{x \to {x_0}} f\left( {{x_0}} \right) + \mathop {\lim }\limits_{x \to {x_0}} L\left( {x - {x_0}} \right) + \mathop {\lim }\limits_{x \to {x_0}} \left( {x - {x_0}} \right).\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = f\left( {{x_0}} \right). \cr} \) 

    Vậy hàm số \(y = f\left( x \right)\) liên tục tại \(x_0\).

      bởi Vương Anh Tú 26/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF