OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {4 - {x^2}} }\\1\end{array}} \right.\,\,\begin{array}{*{20}{c}}{, - 2 \le x \le 2}\\{,x > 2}\end{array}\). Tìm khẳng định đúng trong các khẳng định sau:

(1) \(f(x)\)không xác định tại x = 3

(2) \(f(x)\)liên tục tại x = -2

(3) \(\mathop {\lim }\limits_{x \to 2} f(x) = 2\)

A. Chỉ (1)        

B. Chỉ (1),(2)

C. Chỉ (1), (3)  

D. Tất cả đều sai

  bởi An Vũ 24/02/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • \(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f(x) = 1\\\mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\sqrt {4 - {x^2}} } \right) = 0\end{array}\)    \(\mathop {\lim }\limits_{x \to {2^ - }} f(x) \ne \mathop {\lim }\limits_{x \to {2^ + }} f(x)\)   nên không tồn tại giới hạn của f(x) khi \(x \to 2\)

    \(\mathop {\lim }\limits_{x \to  - 2} f(x) = \mathop {\lim }\limits_{x \to  - 2} \left( {\sqrt {4 - {x^2}} } \right) = 0\)

    \(f( - 2) = \left( {\sqrt {4 - {x^2}} } \right) = 0\)                    \(\mathop {\lim }\limits_{x \to  - 2} f(x) = f\left( { - 2} \right)\)  suy ra  \(f(x)\)liên tục tại x = -2

    Đáp án B

      bởi Lê Tấn Vũ 24/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF