OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho dãy số \(\displaystyle \left( {{u_n}} \right)\) xác định bởi công thức truy hồi \(\displaystyle \left\{ \matrix{ {u_1} = 2 \hfill \cr {u_{n + 1}} = {{{u_n} + 1} \over 2}{\rm{ voi }}n \ge 1 \hfill \cr} \right.\). Chứng minh rằng \(\displaystyle \left( {{u_n}} \right)\) có giới hạn hữu hạn khi \(\displaystyle n\to +\infty \). Tìm giới hạn đó.

  bởi Nguyễn Trung Thành 28/02/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • \(\displaystyle \left\{ \matrix{
    {u_1} = 2 \hfill \cr 
    {u_{n + 1}} = {{{u_n} + 1} \over 2}{\rm\,\,{ vớii }}\,\,n \ge 1 \hfill \cr} \right.\)

    Ta có:

    \(\begin{array}{l}{u_1} = 2\\{u_2} = \dfrac{3}{2} = \dfrac{{2 + 1}}{2}\\{u_3} = \dfrac{5}{4} = \dfrac{{{2^2} + 1}}{{{2^2}}}\\{u_4} = \dfrac{9}{8} = \dfrac{{{2^3} + 1}}{{{2^3}}}\\{u_5} = \dfrac{{17}}{{16}} = \dfrac{{{2^4} + 1}}{{{2^4}}}\end{array}\)

    Dự đoán \({u_n} = \dfrac{{{2^{n - 1}} + 1}}{{{2^{n - 1}}}}\,\left( * \right)\) với \(\forall n \in {\mathbb{N}^*}\)

    Thật vậy,

    +) Với \(n = 1\) ta có \({u_1} = \dfrac{{{2^{1 - 1}} + 1}}{{{2^{1 - 1}}}} = 2\) nên đúng.

    +) Giả sử \(\left( * \right)\) đúng với \(n = k\), nghĩa là \({u_k} = \dfrac{{{2^{k - 1}} + 1}}{{{2^{k - 1}}}}\), ta cần chứng minh \({u_{k + 1}} = \dfrac{{{2^k} + 1}}{{{2^k}}}\)

    Ta có:

    \({u_{k + 1}} = \dfrac{{{u_k} + 1}}{2}\)\( = \dfrac{1}{2}\left( {{u_k} + 1} \right) = \dfrac{1}{2}\left( {\dfrac{{{2^{k - 1}} + 1}}{{{2^{k - 1}}}} + 1} \right)\) \( = \dfrac{1}{2}.\dfrac{{{2^{k - 1}} + 1 + {2^{k - 1}}}}{{{2^{k - 1}}}}\)  \( = \dfrac{{{{2.2}^{k - 1}} + 1}}{{{{2.2}^{k - 1}}}} = \dfrac{{{2^k} + 1}}{{{2^k}}}\)

    \( \Rightarrow dpcm\).

    Từ đó, 

    \(\displaystyle \eqalign{
    & \lim {u_n} = \lim {{{2^{n - 1}} + 1} \over {{2^{n - 1}}}} \cr 
    & = \lim \left[ {1 + {{\left( {{1 \over 2}} \right)}^{n - 1}}} \right] \cr 
    & = \lim \left[ {1 + 2.{{\left( {{1 \over 2}} \right)}^n}} \right] = 1 \cr}\)

      bởi hồng trang 01/03/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF