OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Biết tiếp tuyến (d) của đồ thị hàm số (C): \(y = {x^3} - 2x + 2\) vuông góc với đường phân giác góc phần tư thứ nhất. Phương trình (d) là:

\(A. y =  - x + {1 \over {\sqrt 3 }} + {{18 - 5\sqrt 3 } \over 9},y =  - x + {1 \over {\sqrt 3 }} + {{18 + 5\sqrt 3 } \over 9}\)

\(B. y =  - x,y = x + 4\)

\(C. y =  - x + {1 \over {\sqrt 3 }} + {{18 - 5\sqrt 3 } \over 9},y =  - x - {1 \over {\sqrt 3 }} + {{18 + 5\sqrt 3 } \over 9}\)

\(D. y = x - 2,y = x + 4\)

  bởi Trần Hoàng Mai 25/02/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đường phân giác của góc phần tư thứ nhất có phương trình y = x

    Do tiếp tuyến của đồ thị hàm số vuông góc với đường phân giác của góc phần tư thứ nhất nên hệ số góc của tiếp tuyến là k = -1

    Ta có \(\begin{array}{l}y' = {\left( {{x^3} - 2x + 2} \right)^\prime } = 3{x^2} - 2\\y' =  - 1 \Leftrightarrow 3{x^2} - 2 =  - 1 \Leftrightarrow 3{x^2} = 1 \Leftrightarrow {x^2} = \dfrac{1}{3} \Leftrightarrow x =  \pm \dfrac{1}{{\sqrt 3 }}\end{array}\)

     

    Với \(x = \dfrac{1}{{\sqrt 3 }} \Rightarrow y = {\left( {\dfrac{1}{{\sqrt 3 }}} \right)^3} - 2\left( {\dfrac{1}{{\sqrt 3 }}} \right) + 2 = \dfrac{1}{{3\sqrt 3 }} - \dfrac{2}{{\sqrt 3 }} + 2\)

    Phương trình tiếp tuyến tương ứng là: \(y =  - \left( {x - \dfrac{1}{{\sqrt 3 }}} \right) + \dfrac{1}{{3\sqrt 3 }} - \dfrac{2}{{\sqrt 3 }} + 2 =  - x + \dfrac{1}{{\sqrt 3 }} + \dfrac{{18 - 5\sqrt 3 }}{9}\)

    Với \(x =  - \dfrac{1}{{\sqrt 3 }} \Rightarrow y = {\left( { - \dfrac{1}{{\sqrt 3 }}} \right)^3} - 2\left( { - \dfrac{1}{{\sqrt 3 }}} \right) + 2 =  - \dfrac{1}{{3\sqrt 3 }} + \dfrac{2}{{\sqrt 3 }} + 2\)

    Phương trình tiếp tuyến tương ứng là: \(y =  - \left( {x + \dfrac{1}{{\sqrt 3 }}} \right) - \dfrac{1}{{3\sqrt 3 }} + \dfrac{2}{{\sqrt 3 }} + 2 =  - x - \dfrac{1}{{\sqrt 3 }} + \dfrac{{18 + 5\sqrt 3 }}{9}\)

    Đáp án C

      bởi Bảo Anh 25/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF