-
Câu hỏi:
Xét xem các dãy số \({u_n} = 3n + 1\) có phải là cấp số cộng hay không? Nếu phải hãy xác định công sai.
-
A.
Không phải CSC
-
B.
CSC, \(d = 3\)
-
C.
CSC, \(d = - 3\)
-
D.
CSC, \(d = 1\)
Lời giải tham khảo:
Đáp án đúng: B
Ta có: \({u_{n + 1}} - {u_n} = 3(n + 1) + 1 - 3n - 1 = 3\)
Dãy \(({u_n})\) là CSC có công sai \(d = 3\).
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Tìm bốn số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng 20
- Tìm công sai của cấp số cộng (un) thỏa mãn u_2-u_3+u_5=10; u_4+u_6=26
- Tam giác ABC có ba góc A,B,C theo thứ tự đó lập thành cấp số cộng và C = 5A. Xác định số đo các góc A,B,C.
- Phương trình ({x^4} - 2left( {m + 1} ight){x^2} + 2m + 1 = 0) (1) có bốn nghiệm phân biệt lập thành cấp số cộng.
- Xét xem các dãy số ({u_n} = 3n + 1) có phải là cấp số cộng hay không? Nếu phải hãy xác định công sai.
- Cho cấp số cộng có 8 số hạng. Số hạng đầu bằng 3, số hạng cuối bằng 24. Tính tổng các số hạng này
- Cho các dãy số sau, dãy số nào là cấp số cộng?
- Cho 4 số lập phương thành cấp số cộng. Tổng của chúng bằng 22. Tổng các bình phương của chúng bằng 166.
- Tìm x biết 1+3 +5+...+x =64
- Cho hai cấp số cộng (un): 4,7,10,13,16,...và (vn):1,6,11,16,21,...