OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Trong mặt phẳng Oxy, tìm ảnh của đường tròn \((C):{(x + 1)^2} + {(y - 2)^2} = 9\)  qua phép quay tâm O góc \({90^0}.\)

    • A. 
      \({(x + 2)^2} + {(y + 1)^2} = 9\)  
    • B. 
      \({(x - 2)^2} + {(y + 1)^2} = 9\)
    • C. 
      \({(x - 2)^2} + {(y - 1)^2} = 9\)
    • D. 
      \({(x + 2)^2} + {(y - 1)^2} = 9\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Đường tròn (C) có tâm I(-1;2), bán kính R=3.

    Gọi I’ và R’ là tâm và bán kính của đường tròn (C’) là ảnh của (C).

    Ta có: R’=3

    Với phép quay tâm O góc 90 độ điểm I thành I’(x;y) có tọa độ thỏa mãn: \(\begin{array}{l}\left\{ \begin{array}{l}OI = OI'\\(OI;OI') = {90^0}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{( - 1)^2} + {2^2} = {x^2} + {y^2}\\\overrightarrow {OI} .\overrightarrow {OI'}  = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} = 5\\ - x + 2y = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 2\\y = 1\end{array} \right.\\\left\{ \begin{array}{l}x =  - 2\\y =  - 1\end{array} \right.\end{array} \right.\end{array}\)

    Do \(\alpha  = {90^0} > 0\) phép quay theo chiều dương suy ra: \(I'( - 2; - 1)\)

    Vậy phương trình (C’) là: \({(x + 2)^2} + {(y + 1)^2} = 9.\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

AMBIENT-ADSENSE/
QUẢNG CÁO
 

 

CÂU HỎI KHÁC

NONE
OFF