-
Câu hỏi:
Để tính cos1200, một học sinh làm như sau:
(I) sin1200 =\(\frac{{\sqrt 3 }}{2}\)
(II) cos21200 = 1 – sin21200
(III) cos21200 =1/4
(IV) cos1200=1/2.
Lập luận trên sai ở bước nào?
-
A.
(I)
-
B.
(II)
-
C.
(III)
-
D.
(IV)
Lời giải tham khảo:
Đáp án đúng: D
\({\rm{cos}}{120^ \circ } = \pm \frac{1}{2}\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- \({\sin ^2}x.{\tan ^2}x + 4{\sin ^2}x - {\tan ^2}x + 3{\cos ^2}x\) không phụ thuộc vào x và có giá trị bằng:
- Cho \({\rm{cos}}\alpha = - \frac{2}{5} \left( {\pi < \alpha < \frac{{2\pi }}{3}} \right)\). Tính \(tan \alpha\)
- Rút gọn của biểu thức \({\left( {\frac{{\sin \alpha + \tan \alpha }}{{{\rm{cos}}\alpha {\rm{ + 1}}}}} \right)^2} + 1\):
- Cho \(\cot \alpha = 3\). Khi đó \(\frac{{3\sin \alpha - 2\cos \alpha }}{{12{{\sin }^3}\alpha + 4{{\cos }^3}\alpha }}\) có giá trị bằng
- Khẳng định nào sai trong các câu sau?
- Để tính \(\cos120^0\), một học sinh làm như sau:
- Cho \(\cot \alpha = \frac{1}{2}\left( {\pi < \alpha < \frac{{3\alpha }}{2}} \right)\). Khi đó \({\sin ^2}\alpha .
- Trên đường tròn lượng giác gốc cho các cung có số đo : \(\begin{array}{*{20}{l}}{{\rm{I}}.\frac{\pi }{4}}\\{{\rm{II}}.
- Số đo radian của góc là \(30^o\) :
- Góc có số đo \( - \frac{{3\pi }}{{16}}\) rad được đổi sang số đo độ là: