-
Câu hỏi:
Chọn khẳng định sai trong các khẳng định bên dưới đây?
-
A.
Hàm số \(f\left( x \right)\) xác định trên \(\left( a;b \right)\) được gọi là liên tục tại \({{x}_{0}}\in \left( a;b \right)\) nếu \(\underset{x\to {{x}_{0}}^{+}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{x}_{0}}^{-}}{\mathop{\lim }}\,f\left( x \right)=f\left( {{x}_{0}} \right)\).
-
B.
Nếu hàm số \(f\left( x \right)\) liên tục trên \(\left[ a;b \right]\) thì \(f\left( x \right)\) đạt giá trị nhỏ nhất, giá trị lớn nhất trên \(\left[ a;b \right]\).
-
C.
Nếu hàm số \(f\left( x \right)\) liên tục trên \(\left[ a;b \right]\) và \(f\left( a \right).f\left( b \right)>0\) thì phương trình \(f\left( x \right)=0\) không có nghiệm trên \(\left( a;b \right)\).
-
D.
Các hàm đa thức, hàm lượng giác liên tục tại mọi điểm mà nó xác định.
Lời giải tham khảo:
Đáp án đúng: C
Giả sử \({{x}_{0}}\in \left[ a;b \right]\), \(f\left( {{x}_{0}} \right)<0\) khi đó \(f\left( a \right).f\left( {{x}_{0}} \right)<0\) nên phương trình \(f\left( x \right)=0\) có ít nhất một nghiệm thuộc khoảng \(\left( a;{{x}_{0}} \right)\).
Chọn C.
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Tìm giá trị thực của tham số \(m\) để HS liên tục tại \(x=2\)?
- Chọn khẳng định sai trong các khẳng định bên dưới đây?
- Cho HS liên tục tại \(x=1\) thì \(m\) có giá trị bằng?
- Hàm số \(y=f\left( x \right)\) liên tục tại điểm \({{x}_{0}}\) khi?
- Hàm số nào bên dưới đây gián đoạn tại \(x=-2\)?
- Cho hàm số \(f\left( x \right)=\left\{ \begin{array}{*{35}{l}} 2b{{x}^{2}}-4 & \mathrm{khi} & x\le 3 \\
- Chọn khẳng định sai trong các khẳng định bên dưới đây?
- Trong các hàm số dưới đây, hàm số nào liên tục trên tập \(\mathbb{R}\)?
- Cho hàm số \(f\left( x \right)=\left\{ \begin{array}{*{35}{l}} 3x+a-1 & \mathrm{khi} & x\le 0 \\
- Cho HS \(f\left( x \right)=\left\{ \begin{array}{*{35}{l}} \frac{\sqrt{x}-2}{x-4} & \mathrm{khi} & x>4\\ ax\text{+}\frac{\text{5}}{\text{4}} & \mathrm{khi} & x\le \text{4}\\ \end{array} \right.\), trong đó \(a\) là một hằng số đã biết. HS có giới hạn hữu hạn tại \(x=4\) khi và chỉ khi?