-
Câu hỏi:
Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm các cạnh AB, BC. Trên đường thẳng CD lấy điểm M nằm ngoài đoạn CD. Thiết diện của tứ diện với mặt phẳng (HKM) là:
-
A.
Tứ giác HKMN với N∈AD.
-
B.
Hình thang HKMN với N∈AD
-
C.
Tam giác HKL với L=KM∩BD.
-
D.
Tam giác HKL với L=HM∩AD.
Lời giải tham khảo:
Đáp án đúng: C
Đáp án: C
Giải thích:
Ta có HK, KM là đoạn giao tuyến của (HKM) với (ABC) và (BCD)
Trong mặt phẳng (BCD), do KM không song song với BD nên gọi L=KM∩BD.
Vậy thiết diện là tam giác HKL.
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Trong các khẳng định sau, khẳng định nào đúng? Qua 2 điểm phân biệt có duy nhất một mặt phẳng; ...
- Trong không gian, cho 4 điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
- Cho tứ diện ABCD. Gọi E, F, G là các điểm lần lượt thuộc các cạnh AB, AC, BD sao cho EF cắt BC tại I, EG cắt AD tại H. Ba đường thẳng nào sau đây đồng quy?
- Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
- Trong các mệnh đề sau đây, mệnh đề nào sai? Hai mặt phẳng có một điểm chung thì chúng có vô số điểm chung khác nữa
- Cho 3 đường thẳng \(d_1,d_2,d_3\) không cùng thuộc một mặt phẳng và cắt nhau từng đôi. Khẳng định nào sau đây đúng?
- Thiết diện của 1 tứ diện có thể là:
- Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh AB và AC, E là điểm trên cạnh CD với ED=3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là:
- Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm các cạnh AB, BC. Trên đường thẳng CD lấy điểm M nằm ngoài đoạn CD. Thiết diện của tứ diện với mặt phẳng (HKM) là:
- Cho 3 điểm không thẳng hàng. số mặt phẳng phân biệt đi qua ba điểm đó là: