-
Câu hỏi:
Cho hình chóp có đáy là hình vuông cạnh a,\(SD = \frac{{a\sqrt {17} }}{2}\) . Hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB. Gọi K là trung điểm của AD. Tính khoảng cách giữa hai đường SD và HK theo a.
-
A.
\(d = \frac{{a\sqrt 3 }}{7}\)
-
B.
\(d= \frac{{a\sqrt 3 }}{5}\)
-
C.
\(d = \frac{{a\sqrt {21} }}{5}\)
-
D.
\(d = \frac{{a\sqrt 3 }}{7}\)
Lời giải tham khảo:
Đáp án đúng: B
Ta có
\(SH = \sqrt {S{D^2} - H{D^2}} = \sqrt {S{D^2} - H{A^2} - A{D^2}} = a\sqrt 3\)
Kẻ \(HM \bot BD\), gọi O là giao điểm của AC và BD ta có:
\(AO = \frac{{AO}}{2} = \frac{{a\sqrt 2 }}{2} \Rightarrow HM = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{4}\)
\(HK//BD \Rightarrow HK//\left( {SBD} \right)\)
\(\Rightarrow d\left( {HK;SD} \right) = d\left( {HK;\left( {SBD} \right)} \right)\)
Mà \(d\left( {HK;\left( {SBD} \right)} \right) = d\left( {H;\left( {SBD} \right)} \right)\)
Kẻ \(HN \bot SM\) tại M. Khi đó \(d\left( {H;\left( {SBD} \right)} \right) = HN\).
\(\frac{1}{{H{N^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{M^2}}} \Rightarrow HN = \frac{{a\sqrt 3 }}{5}\)
\(\Rightarrow d\left( {HK;SD} \right) = \frac{{a\sqrt 3 }}{5}\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA=a. Gọi M là trung điểm của cạnh CD
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SD=a17√2, hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB.
- Cho hình chóp S.ABCD có đáy là hình vuông; mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy
- Cho hình chóp có đáy là hình vuông cạnh a, SD = frac{{asqrt {17} }}{2} . Hình chiếu vuông góc H của S lên mặt (ABCD) là trung điểm của đoạn AB
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a. Đường thẳng SA vuông góc với mặt phẳng đáy, SA=2a. Gọi N là trung điểm của AD
- Hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Khoảng cách từ đỉnh S tới mặt phẳng đáy là:
- Cho hình hộp chữ nhật \(ABCD.{A_1}{B_1}{C_1}{D_1}\) có ba kích thước AB = a, AD = 2a, AA1 = 3a.
- Cho hình chóp S.ABCD có đáy là hình thoi tâm O cạnh a và có góc \(\widehat {BAD} = {60^0}\).
- Cho hình lăng trụ đứng ABC.A1B1C1. Cạnh bên AA1 = 21. Tam giác ABC là tam giác vuông cân tại A, BC = 42.
- Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Trong các mệnh đề sau mệnh đề nào là đúng?