OPTADS360
ATNETWORK
ADS_ZUNIA
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hàm số \(y = {x^4} - 2{x^2} - 1\) có đồ thị \(\left( C \right)\). Số tiếp tuyến song song với trục hoành của đồ thị \(\left( C \right)\) là

    • A. 
      1
    • B. 
      2
    • C. 
      3
    • D. 
      0

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có: \(y = {x^4} - 2{x^2} - 1\)\( \Rightarrow y' = 4{x^3} - 4x\).

    Gọi \({M_0}\left( {{x_0};{y_0}} \right)\) là tiếp điểm. Để tiếp tuyến tại \(M\) song song với trục hoành thì \(k = f'\left( {{x_0}} \right) = 0\) \( \Leftrightarrow 4x_0^3 - 4{x_0} = 0\)\( \Leftrightarrow 4{x_0}\left( {x_0^2 - 1} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} =  \pm 1\end{array} \right.\) .

    Với \({x_0} = 0 \Rightarrow {y_0} =  - 1\) ta có điểm \(M\left( {0; - 1} \right)\).

    \( \Rightarrow \) Tiếp tuyến của đồ thị hàm số tại \(M\left( {0; - 1} \right)\) có phương trình \(y = 0\left( {x - 0} \right) - 1\) hay \(y =  - 1\).

    Với \({x_0} =  - 1 \Rightarrow {y_0} =  - 2\) ta có điểm \(M\left( { - 1; - 2} \right)\).

    \( \Rightarrow \) Tiếp tuyến của đồ thị hàm số tại \(M\left( { - 1; - 2} \right)\) có phương trình \(y = 0\left( {x + 1} \right) - 2\) hay \(y =  - 2\).

    Với \({x_0} = 1 \Rightarrow {y_0} =  - 2\) ta có điểm \(M\left( {1; - 2} \right)\).

    \( \Rightarrow \) Tiếp tuyến của đồ thị hàm số tại \(M\left( {1; - 2} \right)\) có phương trình \(y = 0\left( {x - 1} \right) - 2\) hay \(y =  - 2\).

    Do đó có \(2\) tiếp tuyến cần tìm là \(y =  - 1\) và \(y =  - 2\).

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF