OPTADS360
ATNETWORK
ADS_ZUNIA
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hàm số \(y = {x^3} + 3{x^2} - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm M có hoành độ bằng \( - 1\)

    • A. 
      y = 3x - 2
    • B. 
      y =  - 3x - 2
    • C. 
      y = 3x + 2
    • D. 
      y =  - 3x + 2

    Lời giải tham khảo:

    Đáp án đúng: B

    Ta có: \(y' = 3{x^2} + 6x\).

    Với \({x_0} =  - 1\) thì \({y_0} = {\left( { - 1} \right)^3} + 3.{\left( { - 1} \right)^2} - 1 = 1\)

    Hệ số góc \(k = y'\left( { - 1} \right)\) \( = 3.{\left( { - 1} \right)^2} + 6.\left( { - 1} \right) =  - 3\)

    Phương trình tiếp tuyến: \(y =  - 3\left( {x + 1} \right) + 1\) hay \(y =  - 3x - 2\).

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF