-
Câu hỏi:
Cho cấp số cộng \((u_n)\) có: \(u_1=−0,1;d=0,1\). Số hạng thứ 7 của cấp số cộng này là:
-
A.
1,6
-
B.
6
-
C.
0,5
-
D.
0,6
Lời giải tham khảo:
Đáp án đúng: C
Đáp án: C
Giải thích:
Số hạng tổng quát của cấp số cộng \((u_n)\) là:
\(\begin{array}{l}
{u_n} = {u_1} + \left( {n - 1} \right).0,1\\
\Rightarrow {u_7} = - 0,1 + \left( {7 - 1} \right).0,1 = \frac{1}{2}
\end{array}\)Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Cho một cấp số cộng có \(u_1=−3;u_6=27\). Tìm công sai d ?
- Cho cấp số cộng \((u_n)\) có: \(u_1=−0,1;d=0,1\). Số hạng thứ 7 của cấp số cộng này là:
- Cho a, b, c theo thứ tự lập thành CSC, đẳng thức nào sau đây là đúng?
- Tìm bốn số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng \(20\) và tổng các bình phương của chúng bằng \(120^0\).
- Tìm công sai của cấp số cộng (un) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{u_2} - {u_3} + {u_5} = 10}\\{{u_4} + {u_6} = 26}\end{array}} \right.\)
- Tam giác \(ABC\) có ba góc \(A,B,C\) theo thứ tự đó lập thành cấp số cộng và \(C = 5A\)
- Phương trình \({x^4} - 2\left( {m + 1} \right){x^2} + 2m + 1 = 0\) (1) có bốn nghiệm phân biệt
- Xét xem các dãy số \({u_n} = 3n + 1\) có phải là cấp số cộng hay không?
- Cho cấp số cộng có 8 số hạng. Số hạng đầu bằng 3, số hạng cuối bằng 24.
- Cho 4 số lập phương thành cấp số cộng. Tổng của chúng bằng 22.