OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 4.3 trang 162 SBT Toán 8 Tập 1

Giải bài 4.3 tr 162 sách BT Toán lớp 8 Tập 1

Cho hình bình hành ABCD có diện tích S. Trên cạnh BC lấy hai điểm M, N sao cho BM = MN = NC = \({1 \over 3}\)BC

a. Tính diện tích của tứ giác ABMD theo S

b. Từ điểm N kẻ NT song song với AB (T thuộc AC). Tính diện tích của tứ giác ABNT theo S

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Áp dụng công thức tính diện tích hình bình hành bằng tích cạnh đáy và chiều cao tương ứng: \(S=ah\)

Công thức tính diện tích hình tam giác bằng nửa tích cạnh đáy và chiều cao tương ứng: \(S=\dfrac{1}{2}ah\)

Lời giải chi tiết

a. ∆ DMC có CM = \({2 \over 3}\)BC

Hình bình hành ABCD và ∆ DMC có chung đường cao kẻ từ đỉnh D đến BC.

Gọi độ dài đường cao là h, BC = a

Ta có diện tích hình bình hành ABCD là S = a h

\(\eqalign{  & {S_{DMC}} = {1 \over 2}h.{2 \over 3}a = {1 \over 3}ah = {1 \over 3}S  \cr  & {S_{ABMD}} = {S_{ABCD}} - {S_{DMC}} = S - {1 \over 3}S = {2 \over 3}S \cr} \)

b. \({S_{ABC}} = {1 \over 2}{S_{ABCD}} = {S \over 2}\)

\(CN = {1 \over 3}BC\), NT // AB.

Theo tính chất đường thẳng song song cách đều \( \Rightarrow CT = {1 \over 3}AC\)

∆ ABC và ∆ BTC có chung chiều cao kẻ từ đỉnh B, đáy \(CT = {1 \over 3}AC\)

\( \Rightarrow {S_{BTC}} = {1 \over 3}{S_{ABC}} = {1 \over 3}.{S \over 2} = {S \over 6}\)

∆ BTC và ∆ TNC có chung chiều cao kẻ từ đỉnh T, cạnh đáy $CN = {1 \over 3}CB$

\(\eqalign{  &  \Rightarrow {S_{TNC}} = {1 \over 3}{S_{BTC}} = {1 \over 3}.{S \over 6} = {S \over {18}}  \cr  &  \Rightarrow {S_{ABNT}} = {S_{ABC}} - {S_{TNC}} = {S \over 2} - {S \over {18}} = {{9S} \over {18}} - {S \over {18}} = {{4S} \over 9} \cr} \)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 4.3 trang 162 SBT Toán 8 Tập 1 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF