OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải Bài 4 trang 40 SGK Toán 11 Cánh Diều tập 1 - CD

Giải Bài 4 trang 40 SGK Toán 11 Cánh Diều tập 1

Số giờ có ánh sáng mặt trời của một thành phố A ở vĩ độ \(40^\circ \) Bắc trong ngày thứ t của một năm không nhuận được cho bởi hàm số:\(d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\) với \(t \in \mathbb{Z}\, \,\,0 < t \le 365\)

a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm?

b) Vào ngày nào trong năm thì thành phố A có đúng 9 giờ có ảnh sáng mặt trời?

c) Vào ngày nào trong năm thì thành phố A có đúng 15 giờ có ánh sáng mặt trời?

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 4

Phương pháp giải:

Sử dụng công thức tổng quát để giải phương trình hàm số sin.

 

Lời giải chi tiết:

a) Thành phố A có đúng 12 giờ có ánh sáng mặt trời thì d(t)=12. Khi đó

\(\begin{array}{l}12 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 0\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin 0\\ \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = k\pi \\ \Leftrightarrow t = 80 + 182k;k \in Z\end{array}\)

Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên

\(\begin{array}{l}0 < 80 + 182k \le 365\\ \Rightarrow 0 \le k \le 1,56\end{array}\)

Suy ra \(k \in \left\{ {0;1} \right\}\)

Khi đó \(t \in \left\{ {80;262} \right\}\)

Vậy Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 80 và 262 trong năm.

 

b) Thành phố A có đúng 9 giờ có ánh sáng mặt trời thì d(t)=9. Khi đó

\(\begin{array}{l}9 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = - 1\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin \left( { - \frac{\pi }{2}} \right)\\ \Leftrightarrow \frac{\pi }{{182}}(t - 80) = - \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = - 11 + 364k;k \in Z\end{array}\)

Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên

\(\begin{array}{l}0 < - 11 + 364k \le 365\\ \Rightarrow 0 < k \le 1,03\end{array}\)

Suy ra \(k= 1\)

Khi đó \(t= - 11 + 364.1 = 353\)

Vậy Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 353 trong năm.

 

c) Thành phố A có đúng 15 giờ có ánh sáng mặt trời thì d(t)=15. Khi đó

\(\begin{array}{l}15 = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 1\\ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = \sin \left( {\frac{\pi }{2}} \right)\\ \Leftrightarrow \frac{\pi }{{182}}(t - 80) = \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = 171 + 364k;k \in Z\end{array}\)

Mà \(t \in \mathbb{Z}\) và \(0 < t \le 365\) nên

\(\begin{array}{l}0 < 171 + 364k \le 365\\ \Rightarrow 0 \le k \le 0,53\end{array}\)

Suy ra \(k=0\)

Khi đó \(t= 171 + 364.0 = 171\)

Vậy Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày thứ 171 trong năm.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 4 trang 40 SGK Toán 11 Cánh Diều tập 1 - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF