OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 56 trang 30 SBT Toán 11 Tập 1 Cánh diều - CD

Bài tập 56 trang 30 SBT Toán 11 Tập 1 Cánh diều

Phương trình \(\cos 2x = \cos \left( {x + \frac{\pi }{4}} \right)\) có các nghiệm là:

A. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = - \frac{\pi }{4} + k\frac{{2\pi }}{3}}\end{array}{\rm{ }}\left( {k \in \mathbb{Z}} \right)} \right.\)

B. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}}\end{array}{\rm{ }}\left( {k \in \mathbb{Z}} \right)} \right.\)

C. \(\left[ {\begin{array}{*{20}{c}}{x = - \frac{\pi }{4} + k2\pi }\\{x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}}\end{array}{\rm{ }}\left( {k \in \mathbb{Z}} \right)} \right.\)

D. \(\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = - \frac{\pi }{{12}} + k2\pi }\end{array}{\rm{ }}\left( {k \in \mathbb{Z}} \right)} \right.\)

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài tập 56

Ta có: \(\cos 2x = \cos \left( {x + \frac{\pi }{4}} \right)\)

\(\Leftrightarrow \left[ \begin{array}{l}2x = x + \frac{\pi }{4} + k2\pi \\2x = - x - \frac{\pi }{4} + k2\pi \end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\3x = - \frac{\pi }{4} + k2\pi \end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + k2\pi \\x = - \frac{\pi }{{12}} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Đáp án đúng là B.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 56 trang 30 SBT Toán 11 Tập 1 Cánh diều - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF