OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 29 trang 81 SBT Toán 11 Tập 1 Cánh diều

Bài tập 29 trang 81 SBT Toán 11 Tập 1 Cánh diều

Xét tính liên tục của các hàm số sau:

a) \(f\left( x \right) = - {x^2} + \cos x\)

b) \(g\left( x \right) = 3{x^3} + 2 - \frac{3}{{x + 2}}\)

c) \(h\left( x \right) = \frac{{2x + 5}}{{x + 2}} + \frac{{3x - 1}}{{2x - 4}}\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài tập 29

a) Ta thấy rằng các hàm số \(y = - {x^2}\) và \(y = \cos x\) đều liên tục trên tập xác định của chúng là \(\mathbb{R}\).

Nên hàm số \(f\left( x \right) = - {x^2} + \cos x\) liên tục trên \(\mathbb{R}\).

b) Ta có hàm \(y = 3{x^3} + 2\) liên tục trên tập xác định \(\mathbb{R}\).

Nên nó liên tục trên hai khoảng \(\left( { - \infty , - 2} \right)\) và \(\left( { - 2, + \infty } \right)\).

Hàm số \(y = \frac{3}{{x + 2}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng xác định \(\left( { - \infty , - 2} \right)\) và \(\left( { - 2, + \infty } \right)\).

Như vậy, hàm số \(g\left( x \right) = 3{x^3} + 2 - \frac{3}{{x + 2}}\) liên tục trên hai khoảng \(\left( { - \infty , - 2} \right)\) và \(\left( { - 2, + \infty } \right)\).

c) Hàm số \(y = \frac{{2x + 5}}{{x + 2}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng xác định \(\left( { - \infty , - 2} \right)\) và \(\left( { - 2, + \infty } \right)\).

Như vậy, hàm số \(y = \frac{{2x + 5}}{{x + 2}}\) liên tục trên các khoảng \(\left( { - \infty , - 2} \right)\), \(\left( { - 2,2} \right)\) và \(\left( {2, + \infty } \right)\).

Hàm số \(y = \frac{{3x - 1}}{{2x - 4}}\) là hàm phân thức hữu tỉ nên nó liên tục trên các khoảng xác định \(\left( { - \infty ,2} \right)\) và \(\left( {2, + \infty } \right)\).

Như vậy, hàm số \(y = \frac{{3x - 1}}{{2x - 4}}\) liên tục trên các khoảng \(\left( { - \infty , - 2} \right)\), \(\left( { - 2,2} \right)\) và \(\left( {2, + \infty } \right)\).

Vậy hàm số \(h\left( x \right) = \frac{{2x + 5}}{{x + 2}} + \frac{{3x - 1}}{{2x - 4}}\) liên tục trên các khoảng \(\left( { - \infty , - 2} \right)\), \(\left( { - 2,2} \right)\) và \(\left( {2, + \infty } \right)\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 29 trang 81 SBT Toán 11 Tập 1 Cánh diều HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF