OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 19 trang 95 SBT Toán 11 Tập 2 Cánh diều - CD

Bài tập 19 trang 95 SBT Toán 11 Tập 2 Cánh diều

Cho hình tứ diện ABCD có AB ⊥ (BCD), các tam giác BCD và ACD là những tam giác nhọn. Gọi H, K lần lượt là trực tâm của các tam giác BCD, ACD. Chứng minh rằng:

a) AD ⊥ CH;

b*) HK ⊥ (ACD).

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài tập 19

Cho hình tứ diện ABCD có AB ⊥ (BCD), các tam giác BCD và ACD là những tam giác nhọn

a) Vì AB ⊥ (BCD), CH ⊂ (BCD) nên AB ⊥ CH hay CH ⊥ AB.

Do H là trực tâm của tam giác BCD nên CH ⊥ BD.

Ta có: CH ⊥ AB, CH ⊥ BD và AB ∩ BD = B trong (ABD).

Suy ra CH ⊥ (ABD).

Mà AD ⊂ (ABD) nên CH ⊥ AD hay AD ⊥ CH.

b) Trong (BCD), gọi I = BH ∩ CD mà H là trực tâm của tam giác BCD nên BI ⊥ CD.

Lại có: AB ⊥ (BCD), CD ⊂ (BCD) nên AB ⊥ CD.

- Ta có: CD ⊥ BI, CD ⊥ AB và BI ∩ AB = B trong (ABI).

Suy ra CD ⊥ (ABI).

Mà HK ⊂ (ABI) nên CD ⊥ HK. (1)

- Vì K là trực tâm của tam giác ACD nên CK ⊥ AD.

Ta có: AD ⊥ CH (theo câu a), AD ⊥ CK và CH ∩ CK = C trong (CHK).

Suy ra: AD ⊥ (CHK).

Mà HK ⊂ (CHK) nên AD ⊥ HK. (2)

Từ (1), (2) kết hợp với CD ∩ AD = D trong (ACD) nên ta có HK ⊥ (ACD).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 19 trang 95 SBT Toán 11 Tập 2 Cánh diều - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF