Bài tập 17 trang 75 SBT Toán 11 Tập 1 Cánh diều
Sử dụng định nghĩa, chứng minh rằng:
a) \(\mathop {\lim }\limits_{x \to - 2} {x^3} = - 8\)
b) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}} = - 4\)
Hướng dẫn giải chi tiết Bài tập 17
a) Xét hàm số \(f\left( x \right) = {x^3}\). Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thoả mãn \(\lim {x_n} = - 2\).
Ta có: \(\lim f\left( {{x_n}} \right) = \lim x_n^3 = {\left( { - 2} \right)^3} = - 8\). Như vậy \(\mathop {\lim }\limits_{x \to - 2} {x^3} = - 8\).
b) Xét hàm số \(g\left( x \right) = \frac{{{x^2} - 4}}{{x + 2}}\). Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì thoả mãn \({x_n} \ne - 2\) và \(\lim {x_n} = - 2\).
Ta có: \(\lim g\left( {{x_n}} \right) = \lim \frac{{x_n^2 - 4}}{{{x_n} + 2}} = \lim \left( {{x_n} - 2} \right) = \left( { - 2} \right) - 2 = - 4\).
Vậy \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}} = - 4\).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Bài tập 15 trang 75 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 16 trang 75 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 18 trang 75 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 19 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 20 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 21 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 22 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Bài tập 23 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.