OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 22 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD

Bài tập 22 trang 76 SBT Toán 11 Tập 1 Cánh diều

Cho \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 4}}{{x - 1}} = 2\). Tính:

a) \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\)

b) \(\mathop {\lim }\limits_{x \to 1} 3f\left( x \right)\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài tập 22

a) Giả sử \(\mathop {\lim }\limits_{x \to 1} \left( {f\left( x \right) - 4} \right) = L \ne 0\).

Khi đó \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - 4}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {f\left( x \right) - 4} \right).\mathop {\lim }\limits_{x \to 1} \frac{1}{{x - 1}}\).

Ta nhận thấy \(\mathop {\lim }\limits_{x \to 1} \frac{1}{{x - 1}} = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to 1} \frac{1}{{x - 1}} = - \infty \).

Nên \(\mathop {\lim }\limits_{x \to 1} \left( {f\left( x \right) - 4} \right)\mathop {\lim }\limits_{x \to 1} \frac{1}{{x - 1}}\) không thể bằng 2.

Do vậy \(\mathop {\lim }\limits_{x \to 1} \left( {f\left( x \right) - 4} \right) = 0 \Rightarrow \mathop {\lim }\limits_{x \to 1} f\left( x \right) = 4\).

b) Theo câu a, ta có \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = 4\).

Suy ra: \(\mathop {\lim }\limits_{x \to 1} 3f\left( x \right) = \mathop {\lim }\limits_{x \to 1} 3.\mathop {\lim }\limits_{x \to 1} f\left( x \right) = 3.4 = 12\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 22 trang 76 SBT Toán 11 Tập 1 Cánh diều - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF