OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 7.28 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT

Bài tập 7.28 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\). \(SA \bot \left( {ABC} \right)\) và \(SA = 2a\). Tính theo \(a\) khoảng cách:

a) Từ điểm \(B\) đến mặt phẳng \(\left( {SAC} \right)\).

b) Từ điểm \(A\) đến mặt phẳng \(\left( {SBC} \right)\).

c) Giữa hai đường thẳng \(AB\) và \(SC\).

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài 7.28

a) Kẻ \(BH \bot AC\) tại \(H\), mà \(SA \bot \left( {ABC} \right)\) nên \(SA \bot BH\), suy ra \(BH \bot \left( {SAC} \right)\).

Do đó, \(d\left( {B,\left( {SAC} \right)} \right) = BH = \frac{{a\sqrt 3 }}{2}\).

b) Kẻ \(AM \bot BC\) tại \(M\) và \(AK \bot SM\) tại \(K\) thì \(AK \bot \left( {SBC} \right)\).

Suy ra \(d\left( {A,\left( {SBC} \right)} \right) = AK\).

Ta có: \(\frac{1}{{A{K^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{M^2}}} = \frac{{19}}{{12{a^2}}} \Rightarrow AK = 2{\rm{a}}\sqrt {\frac{3}{{19}}} \).

Nên \(d\left( {A,\left( {SBC} \right)} \right) = 2{\rm{a}}\sqrt {\frac{3}{{19}}} \).

c) Dựng hình bình hành \(ABCD\) thì \(AB\parallel \left( {SCD} \right)\) và mặt phẳng \(\left( {SCD} \right)\) chứa \(SC\).

Nên\(d\left( {AB,SC} \right) = d\left( {AB,\left( {SCD} \right)} \right)\).

Mà \(d\left( {AB,\left( {SCD} \right)} \right) = d\left( {A,\left( {SCD} \right)} \right)\), tính tương tự câu b) ta được:

\(d\left( {A,\left( {SCD} \right)} \right) = 2{\rm{a}}\sqrt {\frac{3}{{19}}} \). Vậy \(d\left( {AB,SC} \right) = 2{\rm{a}}\sqrt {\frac{3}{{19}}} \).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 7.28 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF