OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 7.31 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT

Bài tập 7.31 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức

Cho hình lăng trụ đứng \(ABC \cdot A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\) và \(AB = AC = AA' = a\). Tính theo a khoảng cách:

a) Từ điểm \(A\) đến đường thẳng \(B'C'\).

b) Giữa hai đường thẳng \(BC\) và \(AB'\).

 
ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài 7.31

a) Kẻ \(AH\) vuông góc với \(B'C'\) tại \(H\) thì \(d\left( {A,B'C'} \right) = AH\).

Ta có: \(AB' = AC' = B'C' = a\sqrt 2 \) nên \(AH = \frac{{a\sqrt 6 }}{2}\).

Vậy \(d\left( {A,B'C'} \right) = \frac{{a\sqrt 6 }}{2}\).

b) Vì \(BC//\left( {AB'C'} \right)\).

Nên \(d\left( {BC,AB'} \right) = d\left( {BC,\left( {AB'C'} \right)} \right) = d\left( {C,\left( {AB'C'} \right)} \right).\)

Mà \(CA'\) cắt \(AC'\) tại trung điểm của \(CA'\).

Nên \(d\left( {C,\left( {AB'C'} \right)} \right) = d\left( {A',\left( {AB'C'} \right)} \right)\).

Đặt \(d\left( {A',\left( {AB'C'} \right)} \right) = h\) thì \(\frac{1}{{{h^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{A'{B^{{\rm{'}}2}}}} + \frac{1}{{A'{C^{{\rm{'}}2}}}} = \frac{3}{{{a^2}}}\), suy ra \(h = \frac{{a\sqrt 3 }}{3}\).

Vậy \(d\left( {BC,AB'} \right) = \frac{{a\sqrt 3 }}{3}\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 7.31 trang 38 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF