OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 7.10 trang 28 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT

Bài tập 7.10 trang 28 SBT Toán 11 Tập 2 Kết nối tri thức

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\) và \(SA = SC\), \(SB = SD\). Chứng minh rằng:

a) \(SO \bot \left( {ABCD} \right)\);

b) \(AC \bot \left( {SBD} \right)\) và \(BD \bot \left( {SAC} \right)\).

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài 7.10

a) Vì \(O\) là giao điểm của \(AC\) và \(BD\) nên \(O\) là trung điểm của \(AC\) và \(BD\) suy ra tam giác \(SAC,SBD\) cân.

Suy ra \(SO \bot AC,SO \bot BD\).

Do đó \(SO \bot \left( {ABCD} \right)\).

b) Vì \(AC \bot BD,AC \bot SO\) nên \(AC \bot \) (SBD).

Tương tự, ta được \(BD \bot \left( {SAC} \right)\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 7.10 trang 28 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF