Bài tập 6.25 trang 14 SBT Toán 11 Tập 2 Kết nối tri thức
Cho hàm số lôgarit \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_a}x\,\,\,\,(0 < a \ne 1)\). Chứng minh rằng:
a) \(f\left( {\frac{1}{x}} \right) = - f\left( x \right)\)
b) \(f\left( {{x^\alpha }} \right) = \alpha f\left( x \right)\)
Hướng dẫn giải chi tiết Bài 6.25
a) Ta có: \(f\left( {\frac{1}{x}} \right) = {\rm{lo}}{{\rm{g}}_a}\frac{1}{x} = - {\rm{lo}}{{\rm{g}}_a}x = - f\left( x \right)\).
b) Ta có: \(f\left( {{x^\alpha }} \right) = {\rm{lo}}{{\rm{g}}_a}{x^\alpha } = \alpha {\rm{lo}}{{\rm{g}}_a}x = \alpha f\left( x \right)\).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Bài tập 6.23 trang 14 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.24 trang 14 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.26 trang 14 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.27 trang 15 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.28 trang 15 SBT Toán 15 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.29 trang 15 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.30 trang 15 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.