OPTADS360
ATNETWORK
ADS_ZUNIA
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Cho hình chóp \(S.ABC\) có đáy là tam giác đều \(ABC\) cạnh bằng \(a\) và \(SC \bot \left( {ABC} \right)\). Gọi \(M\)là trung điểm của \(AB\) và \(\alpha \) là góc tạo bởi đường thẳng \(SM\) và mặt phẳng \(\left( {ABC} \right)\). Biết \(SC = a\), tính \(\tan \alpha \)?

    • A. 
      \(\dfrac{{\sqrt {21} }}{7}\)    
    • B. 
      \(\dfrac{{\sqrt 3 }}{2}\)  
    • C. 
      \(\dfrac{{2\sqrt 7 }}{7}\)  
    • D. 
      \(\dfrac{{2\sqrt 3 }}{3}\) 

    Lời giải tham khảo:

    Đáp án đúng: D

     

    Vì \(SC \bot \left( {ABC} \right)\) nên \(CM\) là hình chiếu vuông góc của \(SM\) lên \(\left( {ABC} \right)\)

    \( \Rightarrow \angle \left( {SM;\left( {ABC} \right)} \right) = \angle \left( {SM;CM} \right) = \angle SMC = \alpha \).

    Vì \(\Delta ABC\) đều cạnh \(a\) nên \(MC = \dfrac{{a\sqrt 3 }}{2}\).

    Xét tam giác vuông \(SMC\) ta có: \(\tan \angle SMC = \dfrac{{SC}}{{MC}} = \dfrac{a}{{\dfrac{{a\sqrt 3 }}{2}}} = \dfrac{{2\sqrt 3 }}{3}\).

    Vậy \(\tan \alpha  = \dfrac{{2\sqrt 3 }}{3}\).

    Chọn D.

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF