-
Câu hỏi:
Cho cấp số nhân \((u_n)\) với \(u_1\) = 3 ; q= − 2 . Số 192 là số hạng thứ mấy của \((u_n)\)?
-
A.
Số hạng thứ 5.
-
B.
Số hạng thứ 6.
-
C.
Số hạng thứ 7.
-
D.
Không là số hạng của cấp số đã cho.
Lời giải tham khảo:
Đáp án đúng: C
Đáp án: C
Giải thích:
Ta có
\(\begin{array}{l}
{u_n} = {u_1}{q^{n - 1}}\\
\Rightarrow \frac{1}{{{{10}^{103}}}} = - 1.{\left( { - \frac{1}{{10}}} \right)^{n - 1}}\\
\Rightarrow n - 1 = 103\\
\Rightarrow n = 104
\end{array}\)Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Tìm x biết: \(1,x^2,6−x^2\) lập thành một cấp số nhân.
- Dãy số (\(u_n\)) có phải là cấp số nhân không? Nếu phải hãy xác định số công bội ? Biết: \(u_n\)=2n
- Dãy số (\(u_n\)) có phải là cấp số nhân không ? Nếu phải hãy xác định số công bội ?
- Cho dãy số: –1; 1; –1; 1; –1; … Khẳng định nào sau đây là đúng?
- Cho dãy số: –1; –1; –1; –1; –1; … Khẳng định nào đúng?
- Cho cấp số nhân \((u_n)\) với \(u_1\) = − 1/2 ; \(u_7\)= − 32 . Tìm q ?
- Cho cấp số nhân \((u_n)\) với \(u_1\)=−2; q=-5. Viết 3 số hạng tiếp theo và số hạng tổng quát \(u_n\) ?
- Cho cấp số nhân \((u_n)\) với \(u_1\) = 3 ; q= − 2 . Số 192 là số hạng thứ mấy của \((u_n)\)?
- Cho cấp số nhân \((u_n)\) với \(u_1\)=3; q=−1/2. Số 222 là số hạng thứ mấy của \((u_n)\)?
- Xét xem dãy số sau có phải là cấp số nhân hay không? Nếu phải hãy xác định công bội.