Giải Bài 1.23 trang 39 SGK Toán 11 Kết nối tri thức tập 1
Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình
\[x = 2\cos \left( {5t - \frac{\pi }{6}} \right)\]
Ở đây, thời gian t tính bằng giây và quãng đường x tính bằng centimét. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Hướng dẫn giải chi tiết Bài 1.23
Phương pháp giải
Dựa vào công thức nghiệm tổng quát.
\(\begin{array}{l} \cos x = \cos \alpha \\ \Leftrightarrow {\rm{ }}\left[ \begin{array}{l} x = {\alpha ^0} + k{360^0}\\ x = -{\alpha ^0} + k{360^0} \end{array} \right.(k \in Z) \end{array}\)
Lời giải chi tiết
Vị trí cân bằng của vật dao động điều hòa là vị trí vật đứng yên, khi đó x = 0, ta có
\(\begin{array}{l} 2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi ,\,\,k \in Z\\ \Leftrightarrow t = \frac{{2\pi }}{{15}} + k\frac{\pi }{5},\,\,k \in Z \end{array}\)
Trong khoảng thời gian từ 0 đến 6 giây, tức là 0 ≤ t ≤ 6 hay
\( \Leftrightarrow - \frac{2}{3} \le k \le \frac{{90 - 2\pi }}{{3\pi }}\)
Vì k ∈ ℤ nên k ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8}.
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Giải Bài 1.21 trang 39 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Giải Bài 1.22 trang 39 SGK Toán 11 Kết nối tri thức tập 1 - KNTT
Bài tập 1.25 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.26 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.27 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.28 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.29 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.30 trang 25 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.