Bài tập 1.27 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức
Giải các phương trình sau:
a) \(\left( {2 + \cos x} \right)\left( {3\cos 2x - 1} \right) = 0\)
b) \(2\sin 2x - \sin 4x = 0\)
c) \({\cos ^6}x - {\sin ^6}x = 0\)
d) \(\tan 2x\cot x = 1\)
Hướng dẫn giải chi tiết Bài 1.27
a) Ta có: \(\left( {2 + \cos x} \right)\left( {3\cos 2x - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}2 + \cos x = 0\left( {VL} \right)\\3\cos 2x - 1 = 0\end{array} \right. \Leftrightarrow \cos 2x = \frac{1}{3}\)
Gọi \(\alpha \) là góc thỏa mãn \(\cos \alpha = \frac{1}{3}.\) Do đó: \(\cos 2x = \cos \alpha \Leftrightarrow \left[ \begin{array}{l}2x = \alpha + k2\pi \\2x = - \alpha + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\alpha }{2} + k\pi \\x = - \frac{\alpha }{2} + k\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
b) Ta có: \(2\sin 2x - \sin 4x = 0 \Leftrightarrow 2\sin 2x - 2\sin 2x\cos 2x = 0 \Leftrightarrow 2\sin 2x\left( {1 - \cos 2x} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\1 - \cos 2x = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\2x = \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{k\pi }}{2}\\x = \frac{\pi }{4} + k\pi \end{array} \right. \Leftrightarrow x = \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\)
c) Ta có: \({\cos ^6}x - {\sin ^6}x = 0 \Leftrightarrow {\left( {{{\cos }^2}x} \right)^3} = {\left( {{{\sin }^2}x} \right)^3} \Leftrightarrow {\cos ^2}x = {\sin ^2}x \Leftrightarrow {\cos ^2}x - {\sin ^2}x = 0\)
\( \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{\pi }{4} + \frac{{k\pi }}{2}\left( {k \in \mathbb{Z}} \right)\)
d) Điều kiện: \(\cos 2x \ne 0,\sin x \ne 0\)
\(\tan 2x\cot x = 1 \Leftrightarrow \tan 2x = \tan x \Leftrightarrow 2x = x + k\pi \Leftrightarrow x = k\pi \left( {k \in \mathbb{Z}} \right)\)
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Bài tập 1.25 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.26 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.28 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.29 trang 24 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Bài tập 1.30 trang 25 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.