OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 13 trang 46 SBT Toán 11 Tập 1 Cánh diều - CD

Bài tập 13 trang 46 SBT Toán 11 Tập 1 Cánh diều

Chứng minh rằng:

a) Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \sqrt {{n^2} + 1} \) bị chặn dưới.

b) Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = - {n^2} - n\) bị chặn trên.

c) Dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n + 1}}{{n + 2}}\) bị chặn.

ADMICRO/lession_isads=0

Hướng dẫn giải chi tiết Bài tập 13

a) Với \(\forall n \in {\mathbb{N}^*}\), ta có \({n^2} \ge 1 \Rightarrow {n^2} + 1 \ge 2 \Rightarrow \sqrt {{n^2} + 1} \ge \sqrt 2 \).

Do đó, dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \sqrt {{n^2} + 1} \) bị chặn dưới.

b) Với \(\forall n \in {\mathbb{N}^*}\), ta có \(n\left( {n + 1} \right) \ge 1.2 = 2 \Rightarrow {n^2} + n \ge 2 \Rightarrow - {n^2} - n \le - 2\)

Do đó, dãy số \(\left( {{u_n}} \right)\) với \({u_n} = - {n^2} - n\) bị chặn trên.

c) Ta nhận thấy với \(\forall n \in {\mathbb{N}^*}\) thì \(\frac{{2n + 1}}{{n + 2}} > 0\).

Do đó, dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n + 1}}{{n + 2}}\) bị chặn dưới.

Mặt khác, xét \({u_n} - 2 = \frac{{2n + 1}}{{n + 2}} - 2 = \frac{{2n + 1 - 2\left( {n + 2} \right)}}{{n + 2}} = \frac{{ - 3}}{{n + 2}} < 0 \Rightarrow {u_n} < 2\).

Suy ra dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{2n + 1}}{{n + 2}}\) bị chặn trên.

Dãy số \(\left( {{u_n}} \right)\) vừa bị chặn trên, vừa bị chặn dưới, cho nên dãy số \(\left( {{u_n}} \right)\) bị chặn.

Bài toán được chứng minh.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 13 trang 46 SBT Toán 11 Tập 1 Cánh diều - CD HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF