Bài tập 9.6 trang 57 SBT Toán 11 Tập 2 Kết nối tri thức
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = - 3{x^2}\), biết tiếp tuyến đó song song với đường thẳng có phương trình \(y = 6x + 5\)?
Hướng dẫn giải chi tiết Bài 9.6
Ta có \(y = - 3{x^2} \Rightarrow y' = - 6x\).
Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm của tiếp tuyến với parabol \(y = - 3{x^2}\).
Vì tiếp tuyến song song với đường thẳng \(y = 6x + 5\) nên \(y'({x_0}) = 6 \Leftrightarrow - 6{x_0} = 6 \Rightarrow {x_0} = - 1\).
Phương trình tiếp tuyến là \(y = 6\left( {x + 1} \right) - 3\) \( \Rightarrow y = 6x + 3\) thoản mãn.
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.