Bài tập 9.20 trang 62 SBT Toán 11 Tập 2 Kết nối tri thức
Cho hàm số \(f\left( x \right) = {\left( {{x^2} + a} \right)^2} + b\) (\(a,\,\,b\) là tham số). Biết \(f\left( 0 \right) = 2\) và \(f''\left( 1 \right) = 8\), tìm \(a\) và \(b\)?
Hướng dẫn giải chi tiết Bài 9.20
Đạo hàm \(f'\left( x \right) = 4x\left( {{x^2} + a} \right) \Rightarrow f'' = 12{x^2} + 4a\).
Do \(\left\{ \begin{array}{l}f\left( 0 \right) = 0\\f'\left( 1 \right) = 8\end{array} \right. \\\Rightarrow \left\{ \begin{array}{l}{a^2} + b = 2\\12 + 4a = 8\end{array} \right. \\\Rightarrow \left\{ \begin{array}{l}a = - 1\\b = 1\end{array} \right.\).
Vậy \(\left\{ \begin{array}{l}a = - 1\\b = 1\end{array} \right.\).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.