Bài tập 6.31 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức
Giải các phương trình mũ sau:
a) \({4^{2x - 1}} = {8^{x + 3}}\);
b) \({9^{2x}} \cdot {27^{{x^2}}} = \frac{1}{3}\)
c) \({\left( {{e^4}} \right)^x} \cdot {e^{{x^2}}} = {e^{12}}\)
d) \({5^{2x - 1}} = 20\).
Hướng dẫn giải chi tiết Bài 6.31
a) Ta có: \({4^{2x - 1}} = {8^{x + 3}} \Leftrightarrow {2^{4x - 2}} = {2^{3x + 9}} \Leftrightarrow 4x - 2 = 3x + 9 \Leftrightarrow x = 11\)
b) Ta có: \({9^{2x}} \cdot {27^{{x^2}}} = \frac{1}{3} \Leftrightarrow {3^{4x}} \cdot {3^{3{x^2}}} = {3^{ - 1}} \Leftrightarrow {3^{3{x^2} + 4x + 1}} = 1\)
\( \Leftrightarrow 3{x^2} + 4x + 1 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - \frac{1}{3}}\\{x = - 1}\end{array}} \right.\)
c) Ta có: \({\left( {{e^4}} \right)^x} \cdot {e^{{x^2}}} = {e^{12}} \Leftrightarrow {e^{4x}} \cdot {e^{{x^2}}} = {e^{12}} \Leftrightarrow {e^{{x^2} + 4x - 12}} = 1\)
\( \Leftrightarrow {x^2} + 4x - 12 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 2}\\{x = - 6.}\end{array}} \right.\)
d) Ta có: \({5^{2x - 1}} = 20 \Leftrightarrow 2x - 1 = {\rm{lo}}{{\rm{g}}_5}20 \Leftrightarrow x = \frac{1}{2}\left( {1 + {\rm{lo}}{{\rm{g}}_5}20} \right)\)
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Giải Bài 6.25 trang 24 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Giải Bài 6.26 trang 24 SGK Toán 11 Kết nối tri thức tập 2 - KNTT
Bài tập 6.32 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.33 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.34 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.35 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.36 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.37 trang 19 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.38 trang 20 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.39 trang 20 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Bài tập 6.40 trang 20 SBT Toán 11 Tập 2 Kết nối tri thức - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.