OPTADS360
ATNETWORK
ADS_ZUNIA
YOMEDIA
Banner-Video
IN_IMAGE
  • Câu hỏi:

    Tính giới hạn \(\lim \frac{{{1^2} + {2^2} + {3^2} + ... + {n^2}}}{{{n^3} + 3n}}\).

    • A. 
      \(\frac{1}{3}\)
    • B. 
      1
    • C. 
      \(\frac{1}{4}\)
    • D. 
      2

    Lời giải tham khảo:

    Đáp án đúng: A

    Bằng phương pháp quy nạp toán học ta chứng minh \({1^2} + {2^2} + {3^2} + ... + {n^2}\)\( = \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6},\)\(\forall n \ge 1,n \in \mathbb{Z}\).

    Đẳng thức trên đúng với \(n = 1\) vì \(1 = \frac{{1.2.3}}{6}\).

    Giả sử đẳng thức trên đúng đến \(n = k\)

    \( \Rightarrow {1^2} + {2^2} + ... + {k^2}\) \( = \frac{{k\left( {k + 1} \right)\left( {2k + 1} \right)}}{6}\)

    Ta cần chứng minh nó đúng đến \(n = k + 1\), tức là cần chứng minh

    \({1^2} + {2^2} + ... + {\left( {k + 1} \right)^2}\)\( = \frac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6}\) .

    Ta có:

    \(\begin{array}{l}VT\\ = {1^2} + {2^2} + ... + {\left( {k + 1} \right)^2}\\ = \frac{{k\left( {k + 1} \right)\left( {2k + 1} \right)}}{6} + {\left( {k + 1} \right)^2}\\ = \frac{{\left( {k + 1} \right)\left( {2{k^2} + k + 6k + 6} \right)}}{6}\\ = \frac{{\left( {k + 1} \right)\left( {2{k^2} + 7k + 6} \right)}}{6}\\ = \frac{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {2k + 3} \right)}}{6}\\ = VP\end{array}\)

    \( \Rightarrow \) Đẳng thức được chứng minh. Khi đó ta có:

    \(\begin{array}{l}\lim \frac{{{1^2} + {2^2} + {3^2} + ... + {n^2}}}{{{n^3} + 3n}}\\ = \lim \frac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{{6\left( {{n^3} + 3n} \right)}}\\ = \lim \frac{{1.\left( {1 + \frac{1}{n}} \right)\left( {2 + \frac{1}{n}} \right)}}{{6\left( {1 + \frac{3}{{{n^2}}}} \right)}}\\ = \frac{{1.1.2}}{{6.1}} = \frac{1}{3}\end{array}\)

    Hãy trả lời câu hỏi trước khi xem đáp án và lời giải

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

ADMICRO/

 

CÂU HỎI KHÁC

NONE
OFF